PG – 364

Max. Marks: 70

II Semester M.Sc. (CBCS) Examination, June 2015 MATHEMATICS M 203 T : Topology – II

Time : 3 Hours

Instructions : i) Answer any five questions.

- ii) **All** question carry **equal** marks.
- a) Define a compact space with an example. If E is a subset of a subspace (Y, T *) of a topological space (X, T), then prove that E is T * compact if and only if it is T -compact.
 - b) Every countable open cover of $(X,\top\,\,)$ has a finite subcover. Then prove that $(X,T\,\,)$ is countably compart.
 - c) Prove that every closed subset of a locally compact space is locally compact. (6
- 2. a) Define :
 - i) A First Axiom Space (FAS).
 - ii) Second Axiom Space (SAS)

Prove that every SAS is a separable space. Is the converse true ? Justify.

- b) Show that every second countable space is Lindeloff.
- c) Show that a compact metric space is totally bounded. Is the converse false ? Justify your answer. (7+3+4)
- 3. a) Show that a mapping f : $z \to X \times Y$ is continuous iff $\prod_x \circ f$ and $\prod_y \circ f$ are continuous.
 - b) Prove that
 - i) $X \times Y$ is locally connected iff X and Y are locally connected.
 - ii) X × Y is completely regulars iff X and Y are completely regular. (5+5+4)
- 4. a) Prove that an infinite set with the co-finite topology is a T_1 -space.
 - b) Define T_2 -space show that T_1 -space does not implies T_2 -space.
 - c) Show that a compact subset of a Hausdorff space is closed. (4+5+5)

(6+4+4)

PG - 364

- 5. a) Define a regular space. Prove that a regular space need not be a T_1 -space.
 - b) Prove that T₃-space is both hereditary and topological property. (6+8)
- a) Define a normal space. Prove that a space (X, T) is normal iff given any open set G and a closed set F ⊆ G, there exists an open set G* such that F ⊆ G* ⊆ G* ⊆ G.
 - b) Prove that a compact Housdorff space is normal. (7+7)
- 7. a) State and prove tietze's extension theorem.
 - b) Define a completely normal space and prove that completely normality implies normality. (10 + 4)
- 8. a) Prove that a space is completely normal iff every subspace is normal.
 - b) Prove that every metric space is completely normal. (7+7)

3M